With measurement D\mathbf{D}D and model parameters θ\mathbf{\theta}θ
Pr(D∣θ)×Pr(θ)=Pr(D)×Pr(θ∣D) Pr(\mathbf{D}|\mathbf{\theta})\times Pr(\mathbf{\theta})=Pr(\mathbf{D})\times Pr(\mathbf{\theta}|\mathbf{D}) Pr(D∣θ)×Pr(θ)=Pr(D)×Pr(θ∣D) Likelihood×Prior=Evidence×Posterior {\rm Likelihood}\times {\rm Prior}={\rm Evidence}\times {\rm Posterior} Likelihood×Prior=Evidence×Posterior L(θ)×π(θ)dθ=Z×P(θ)dθ \mathcal{L}(\theta)\times \pi(\mathbf{\theta})d\mathbf{\theta}=Z\times P(\theta)d\mathbf{\theta} L(θ)×π(θ)dθ=Z×P(θ)dθ ∫L(θ)×π(θ)dθ=Z×∫P(θ)dθ \int \mathcal{L}(\theta)\times \pi(\mathbf{\theta})d\mathbf{\theta}=Z\times \int P(\theta)d\mathbf{\theta} ∫L(θ)×π(θ)dθ=Z×∫P(θ)dθ
∵P(θ)dθ≡1\because P(\theta)d\theta\equiv 1∵P(θ)dθ≡1 ∴Z=∫L(θ)×π(θ)dθ\therefore Z=\int \mathcal{L}(\theta)\times \pi(\mathbf{\theta})d\mathbf{\theta}∴Z=∫L(θ)×π(θ)dθ