.--- .... --. ..- .----. ... /.--. . .-. ... --- -. .- .-.. /... .. - .

Bayesian Theorem

Bayesian Theorem and Model Evidence

With measurement D\mathbf{D} and model parameters θ\mathbf{\theta}

Pr(Dθ)×Pr(θ)=Pr(D)×Pr(θD) Pr(\mathbf{D}|\mathbf{\theta})\times Pr(\mathbf{\theta})=Pr(\mathbf{D})\times Pr(\mathbf{\theta}|\mathbf{D}) Likelihood×Prior=Evidence×Posterior {\rm Likelihood}\times {\rm Prior}={\rm Evidence}\times {\rm Posterior} L(θ)×π(θ)dθ=Z×P(θ)dθ \mathcal{L}(\theta)\times \pi(\mathbf{\theta})d\mathbf{\theta}=Z\times P(\theta)d\mathbf{\theta} L(θ)×π(θ)dθ=Z×P(θ)dθ \int \mathcal{L}(\theta)\times \pi(\mathbf{\theta})d\mathbf{\theta}=Z\times \int P(\theta)d\mathbf{\theta}

P(θ)dθ1\because P(\theta)d\theta\equiv 1 Z=L(θ)×π(θ)dθ\therefore Z=\int \mathcal{L}(\theta)\times \pi(\mathbf{\theta})d\mathbf{\theta}